A Computationally Universal Field Computer That is Purely Linear

David H. Wolpert
NASA Ames Research Center,
MS 269-1, Moffett Field, CA 94035, USA
dhw@ptolemy.arc.nasa.gov

Abstract

A field computer is a (spatial) continuum-limit neural
net (MacLennan 1987). We investigate field comput-
ers whose temporal dynamics is also continuum-limit,
being governed by an integro-differential equation. We
prove that even when they are purely linear, such sys-
tems are computationally universal. The “trick” used to
get such universal (and therefore in general nonlinear)
behavior is quite similar to the way nonlinear macro-
scopic physics arises from the purely linear microscopic
physics of Schrodinger’s equation: one interprets the
system in a non-linear way. In this paper, we show that
simply using a unary code for the interpretation suffices.
See (Wolpert and MacLennan, 1993) for full details and
additional material.

1 A purely linear continuum-limit neural net

The most natural way to extend conventional neural
nets to the continuum limit in the set of neurons is
to invoke the concept of a “field”, that is a real-valued
function on an n-dimensional Euclidean space (MacLen-
nan 1987). In this extension the continuum of neurons
is indexed by real vectors r € R, and the activation of
a neuron is represented by ¢ = @(r), the field’s value
at that point. We represent the dynamics of such a
field with a function f: R — ®(R"), where ®(R"), is
some convenient space of allowed fields (e.g., L2(R™)).
So ¢ = f(to) is interpreted as the state of a continuum-
limit neural net at time to; ¢» = f(to,) is the activation
value at the time ¢y of the neuron indexed by r.

In this paper we concentrate on fields whose dynam-
ics is purely linear. The dependence of f on ¢ (i.e., the
dynamics of the net) is determined by the continuum-
limit version of what neural net dynamics would be

Bruce J. MacLennan
Computer Science Department,

University of Tennessee, Knoxville, TN 37996-1301

maclennan@cs.utk.edu

if there were no sigmoidal non-linearity, i.e., by the
continuum-limit version of multiplying by a weight ma-
trix. More precisely, the dynamics is given by the (lin-
ear) integro-differential evolution equation,

Buf(t,x) = / ar' G(r, ') (t,1'), (1)

which we abbreviate as

ft) =Gf(b). (2)

The “weight matrix” of the net corresponds to the ker-
nel (G € &(R"xR™)) of this evolution equation. In
particular, a kernel that is non-zero for all values of its
arguments corresponds to a neural net whose weight
matrix is fully (recurrently) connected.

The most natural way of assigning meaning to the
distribution f(t) is in terms of its support across R™.
(This corresponds to interpreting the state of a neural
net by examining which neurons have activation values
exceeding a certain threshold, a scheme usually called
the “unary” representation in the neural net literature.)
So for example, if the support across R™ of f(tg) cov-
ers a region ¥p, then we interpret f(to) as having one
meaning, whereas if instead it covers a different region
¥, we interpret f(to) as having some different meaning.
The actual values of f across R™ only matter insofar as
they determine the support of f.

In this paper, even the time when output occurs is
determined by the support of f: output is signaled when
the support covers a predetermined output-flagging re-
gion of R™. So for example, if ¢, is the earliest time
when the support of f covers the output-flagging re-
gion, then the output of the system is determined by
the distribution of f(¢2)’s support over R®. With this
scheme, in direct analogy to a Turing machine (TM),
the amount of time the net runs is a variable, and in
general depends on the input values fed into the net
(i.e., depends on the field f(¢o)).

2 Computational Universality

This section describes how to construct a G such that
the evolution equation for f(t), f(t) = Gf(t), when
combined with the unary representation interpretation
of f(t), is computationally equivalent to any particu-
lar TM. The fact that the system is defined over an
uncountably infinite space (R™) won’t be necessary in
this exposition; in fact, to facilitate the analysis the dy-
namics will be reduced to an evolution equation over a
countably infinite subspace of R™. All proofs can be
found in (Wolpert and MacLennan, 1993).

2.1 How to interpret a field as a Turing Machine

First some notational comments are in order. We will
work in R® (i.e., n = 5). However not all five compo-
nents will be used to specify the state of the TM; some
will help with our book-keeping. Bold lower-case letters
indicate vectors, and subscripted italic letters indicate
components of a vector. Let p be any vector in R* and z
a real-valued scalar; we define (p, z) to be the R® vector
(p1, p2,p3, Pa,2). So for example, if the 4-dimensional
vector o tells us something of the TM’s state at time ¢,
and if we want the 5th component of our corresponding
RS vector to equal t, then that corresponding vector
r € R® is given by r = (o,t). For convenience define
the m-dimensional Dirac delta functions as follows:

m
)= H ry — S), forr,s € R™.

(m is implicitly set by the arguments of the A.)

The basic idea is to find a kernel G with solution f
such that any element in the support of f, r, can be
interpreted in the following manner. First, r5 serves as
a system clock; at any particular time ¢ there is only
one value of r5 such that f(t,r) # 0, and this value
of 5 is proportional to t, 75 = wt. (This clock is nec-
essary to have the dynamics cycle through the various
operations making up an iteration of a TM; without
this clock embedded in R™, the dynamics has no way
of knowing what TM operation to apply.) Without loss
of generality we take w = 1.

In addition to this restriction on r5, we want f(t,r)
never to be non-zero except for those r; through r4 on
the following lattice: 74 € {0,1}, and r1,rs,r3 € ZT.
We define A C R* to be this lattice:

A= (Z")*x{0,1}.

At any particular time ¢, there will only be one or two of
these lattice points in A for which f(¢,r) # 0. These val-
ues of r; through ry4 for which f(¢) is non-zero code for
the condition of the TM as follows: r; represents head
position on the TM’s tape, ro represents the numerical
value on the tape (which for simplicity is assumed to

have a finite number of 1’s), r3 represents the internal
state of the TM, and r,4 is a buffer label. As t changes,
the values of rq,73,73, and r4 for which f(t,r) # 0
should change in exact accord with the dynamics of the
TM being emulated. In effect, the lattice points repre-
sent possible states of our TM emulation, and at any
time ¢, f(t) “points” to a few of these states.

Formally, the goal is to find a G such the evolution
equation has a solution with the following properties.
First, the solution must be of the form

Z Alr, (o, 1)K (t, o). (3)

ocA
This solution is a superposition of five-dimensional Dirac
delta functions, all centered in 75 about the point t.
Each delta function is centered in R* about a differ-
ent one of the allowed lattice sites o, with magnitude
K(t,o) at each such site. Second, at any time ¢ there
must only be a few values of o such that K(t,o) # 0. It
is the dynamics of this support of K (t,0) which must
correspond to the dynamics of the TM under the in-
terpretation of ry through r4 outlined above. We must
construct a G such that the evolution equation has so-
lution of the form Eq. 3, where the coordinate projec-
tions of the support of the associated function K obey
the dynamics of the TM being emulated. In this way
dynamics over R? is reduced to dynamics over A.

2.2 Reducing to countably infinite dynamics

This subsection shows how to choose a G with solution
given by Eq. 3, for arbitrary K. The subsequent sub-
section shows how to choose K so that the dynamics
over A emulates an arbitrary Turing machine.

Lemma 1: Let
G(I’, rl) = _6T5A(r7 rl) + 6(T5 - ’I“I5)F(I’, IJ)? (4)
where for any p € R*, o € A, the function T obeys

S T((p,0), (0, 0)K(t,0) = 3 Alp,)2 K (t,) (5)
o3 o3

for some time-varying field K; € ®(R?®). Then Eq. 3
satisfies the evolution equation (Eq. 1). (The behavior
of I'(r,r") (and therefore of G(r,r')) for points r' whose
first four components do not lie on A is completely free.)

To use this to reduce dynamics over R? to dynam-
ics over A, choose I'(r,r') = > 5/ cp A(p,0")A(r,1')
for some function A € ®(R3xR?) (p being the vec-
tor of the first four components of r). Because of the
delta function A(p,a"), the terms of this summation
are nonzero only when p = ¢". Therefore the r = (p, t)
appearing inside A(r,r') can be replaced with (o”,1).

Hence,
= 3 Alp,o")All”, 1), .
o'cA

Substituting this I' into Eq. 5 yields:
Z A(p7 a-)atK(t7 0')
o

= Y Tlp. 1), (o, 0K (t,0)
o

E {A(p, o) Z Al(e",t), (o' 1)K (8, o")} .

o'

This equality can be enforced if individual terms on the
right cancel with individual terms on the left, i.e., if

K (t,o) = E Al(o,t), (',)| K (t,a).

Since t is the fifth component of both (o,%) and (o', %),
we can re-express the dependence of A on its arguments
to get the following:

K (t,o) = Z A(t,o,0"\K(t, '),
al

which is an “infinite matrix product,”
K(t) = A(t) K (t). (6)

This equality is a discrete-space version of the origi-
nal evolution equation, with one important difference.
Whereas the evolution equation had a time-independent
kernel G, the equation governing the dynamics of K has
a kernel A(t) which depends explicitly on .

The results so far can be summarized as follows.

Choose a function A(t). This function specifies a T'(r, r').

Now choose a function K(t) which satisfies Eq. 6 at
the lattice points. This function specifies an f(¢,r).
We know that this I'(r,r') and this f(¢,r) together sat-
isfy Eq. 5. Accordingly, this f(¢,r) together with the
G(r,r') given by I'(r,r') jointly satisfy Eq. 1. In other
words, so long as we choose an A(t) and a K(t) which
jointly satisfy Eq. 6, we will be assured that the f(¢,r)
based on K (t) satisfies Eq. 1 with a I'(r,r') based on
A(t). Furthermore, K (¢t,r) and f(¢,r) are non-zero for
the exact same r values, all from within A. Therefore
the meaning of f(t,r) is given by the A-support of the
associated K (t,0). So our task is reduced to the fol-
lowing: Given any particular TM, find an A(t) such
that the associated K (t) (associated via Eq. 6) has a
A-support which emulates that TM. The next part of
this section describes how to do this.

2.3 Emulating a particular TM

There are several separate logical operations making
up an iteration of a TM. It will take the dynamics
of the system exactly 1 unit of time to complete each
such operation, and A(¢) is fixed for each such oper-
ation. In other words, if we assume that the system

starts evolving at ¢ = 0, then A(t) remains unchanged
throughout each of the separate intervals t € [n,n + 1),
n=20,1,2,....

Four distinct operations occurring in four such con-
secutive temporal intervals together make up a single
iteration of a TM. At the beginning of an iteration the
current contents of the TM are stored in the o4 = 0
hyperplane. The first operation clears the buffer hyper-
plane (o4 = 1). The second operation calculates the
condition which the TM being emulated will have at
the end of its next iteration and stores the (suitably
encoded) result in the o4 = 1 hyperplane. (This calcu-
lation is based on the current contents of the o4 = 0
hyperplane). The third operation clears the o4 = 0 hy-
perplane, and the fourth operation copies the contents
of the o4 = 1 hyperplane into the o4 = 0 hyperplane.
At the end of this cycle, the dynamics repeats itself:
A(t) = A(t + 4) for all t. (The detailed description of
A(t) together with the proof that it performs as claimed
is in (Wolpert and MacLennan, 1993).)

3 Discussion

3.1 The system as a cogpnitive processor

There are other ways of interpreting a system f evolv-
ing according to the equation f(t) = Gf(t), in addition
to viewing it as a continuum-limit neural net. In par-
ticular, such a system can be viewed as a “cognitive
processor” operating in (massive) parallel. The idea
is to view the value of f(t,r) as the “confidence” one
has at time ¢ in the proposition labeled by r. The dy-
namical evolution of the system is the system trying to
determine the answer to a question encoded as f(tg,),
i.e., trying to determine what proposition to have most
confidence in, in response to the proposition encoded in
the support of f(tg,r). This evolution can be viewed as
infinite parallel streams of thought, each with different
confidence levels, interacting with one another in an at-
tempt to answer the question. (The interaction consists
of transferring confidence among the various possible r
values according to the evolution equation.)

This confidence-level interpretation doesn’t ascribe
meaning only to the support of f(t), but also takes into
account the actual values of the field f(t). Nonetheless,
one might still wish to flag output by running the sys-
tem until the support of f(t) covers a pre-determined
output-flagging region of R™. In this context, such out-
put flagging means simply that the system processes
a question for as long as it takes for it to determine
that it has an answer, which (in the form of f(t), the
distribution across R™ of confidence levels) is signaled
when the output is flagged (i.e., when one has non-zero
confidence that a decision has been made).

Our evolution equation exactly reflects this interpre-
tation of the dynamics as the transferring of a conserved

amount of confidence among propositions r provided
that we can express G as

G(r,v') = H(r,r') = (' — r)/dr"H(r",r) (7

for some field H € ®(R"xR"). To see this, note that
for such a G our evolution equation f(t) = Gf(t) (Eq. 1)
can be rewritten as

f(t,r) = / dr' H(r,v') f(t,1) — / A H(x" v)f(t,1).

The second integral represents loss in confidence in the
point r accompanying H-induced transfer of confidence
from r to other points. The first integral represents
gain in confidence in r due to loss of confidence in the
other points. In general H need not be symmetric (i.e.,
H(r',r) need not equal H(r,r')), which means that the
dynamics governing loss of confidence in r need not
be the same as that governing gain in confidence in
r. Whether or not H is symmetric, f(¢) maintains nor-
malization through time: &J[f drf(t,r)] = 0, so that
our total confidence remains unchanged.

3.2 Schrddinger’s equation and computational uni-
versality

If we work in R? (i.e., if n = 3), and if f is allowed to
be complex-valued, then for

Gr.r') = (%) [(% S 8 —7"2))

!

i

+ o(r—-r"V(")],

f’s evolution equation reduces to Schrédinger’s equa-
tion for a quantum-mechanical wave-function f:
ih h2v2f
2w 8mm?
where as usual V is the potential governing the wave
function’s evolution and h is Planck’s constant.

Now any system purporting to be an (approximation
of) a real-world TM is built of components which are,
ultimately, quantum mechanical in nature, and in quan-
tum mechanics meaning is ascribed to the support of
the wave function f (for sufficiently peaked wave func-
tions). Therefore we can immediately conclude that,
via appropriate choice of the potential V', our evolu-
tion equation allows TM solutions. (Strictly speaking,
this correspondence between our evolution equation and
quantum mechanics actually requires that Schrédinger’s
equation for a set of more than one interacting parti-
cles be simulated.) Alternatively, one can establish uni-
versality of our evolution equation for compolex-valued
fields simply by noting that there exists a G such that
that equation emulates Schrodinger’s equation, and by
then appealing directly to results in quantum Turing
machine theory.

+Vf,

3.3 Training

For the system considered in this paper, training the
system (i.e., finding a set of weights so that the net
reproduces a particular training set) amounts to find-
ing a G such that when f(0) corresponds to one of the
inputs in the training set, then the signaled output f(¢
when output signaling occurs) codes for the correspond-
ing output. Finding such a G is an ill-posed problem,
of course; in any scheme for “training” G to repro-
duce a training set, some sort of regularizer is needed
to uniquely fix G. Otherwise one could simply use the
preceding several sections to build an infinite number of
distinct TM’s, all of which reproduce the training set.
As a particular example, to choose among the infinity
of TM’s that reproduce any provided training set, some
bias in favor of smaller TM’s (perhaps based on an ap-
proximation to the algorithmic information complexity
of the TM) is a natural choice of regularizer.

When G is not restricted to the form given in Sec-
tion 2, the need for regularization is even more pro-
nounced. In addition, without that restriction regular-
ization biases like algorithmic complexity become mean-
ingless. In such cases alternative biases must be consid-
ered, like those involving integrated curvature of G.

As a final dropping of restrictions, consider regular-
ization in the case of complex-valued fields. The cor-
respondence of our evolution equation for such fields
with quantum mechanics means that we can recast the
problem of finding a G to reproduce a provided training
set as the problem of finding a potential which evolves
one set of wavefunctions into another set of wavefunc-
tions. This is nothing other than a quantum mechanical
scattering problem! Such problems have been studied
intensively for decades. Exploiting this, one way to find
a G to reproduce a provided training set (i.e., provided
scattering data) is to assume that there are a discrete
number of scattering objects and solve for their posi-
tions (just as in X-ray diffraction). Regularization in
this context could be a bias towards fewer scattering
centers, for example.

4 References

MacLennan, B. J. (1987). Technology-independent de-
sign of neurocomputers: The universal field com-
puter. In M. Caudill & C. Butler (Eds.), Pro-
ceedings, IEEE First International Conference on
Neural Networks (Vol. 3, pp. 39-49). New York,
NY: Institute of Electrical and Electronic Engi-
neers.

Wolpert, D. H. & MacLennan, B. J. (1993). A Compu-
tationally Universal Field Computer That is Purely
Linear, SFI TR 93-09-056, submitted.

